您好、欢迎来到现金彩票网!
当前位置:刘伯温首页 > 图灵机 >

为什么图灵机可以执行任何算法?

发布时间:2019-08-09 07:30 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  展开全部由于图灵机的带子是可以向右无限延伸的,所以图灵机的存储空间和计算时间都是可无限制增加的。因此,图灵机是一般算法概念的精确化,即任何算法均可由适当的图灵机模拟。人们尚未发现一个直观可以计算的函数不能由图灵机来计算。而且,已有的关于直观可计算函数的另一些精确化定义,如递归函数、λ 可定义函数等,都等价于图灵机定义的可计算函数。

  通用图灵机 已经证明,存在一个图灵机U,它可以模拟任何其他的图灵机T,这样的U称为通用图灵机。U的带子上记录着被模拟机器T的指令描述,也记录着T的问题数据。在工作过程中,U根据输入带上记录的T的指令,模拟T的动作,处理问题的数据。这样,U可以模拟任何计算过程。

  停机问题 图灵机根据机器的程序处理初始格局。有的初始格局可能导致停机,有的则导致无限的格局序列。停机问题是:是否存在一个算法,对于任意给定的图灵机都能判定任意的初始格局是否会导致停机。已经证明,这样的算法是不存在的,即停机问题是不可判定的。

  停机问题是研究许多不可判定问题的基础,人们往往把一个问题的判定归结为停机问题:“如果问题 A可判定,则停机问题可判定。”从而证明问题 A的不可判定性。停机问题有多种不同的叙述方式和证明方法,它们分别适用于具有不同特征的问题。

http://sox-populi.com/tulingji/533.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有